UT601 Operating Manual ### **Modern Digital Specialized Meter** This Operating Manual covers information on safety and cautions. Please read the relevant information carefully and observe all the Warnings and Notes strictly. ## ⚠ Warning To avoid electric shock or personal injury, read the "Safety Information" and "Rules for Safety Operation" carefully before using the Meter. Digital Capacitance Meter Model UT601 (hereafter referred to as "the Meter") is a 3 1/2 digits with steady operations. fashionable design and highly reliable hand-held measuring instrument. The Meter can also measure resistance transistor, diode and continuity buzzer. The Meter has a broad capacitance measurement range and precise accuracy. It can be used in measuring the circuit designed capacitance of cable, switch and PCB ### Unpacking Inspection Open the package case and take out the Meter. Check the following items carefully to see any missing or damaged Description | | | "'' | | | | |--|---|---------|------|------------------|---------------------------------| | 1 English Operating Manual | | | | | | | 2 | Test Clip | 1 pair | | ÷ | Grounding | | 3 | 9V Battery (NEDA1604, 6F22 or 006P) | 1 piece | | | Double Insulated | | | (installed) | | | Ċà. | Deficiency of Built-In Battery. | | e event you find any missing or damage, please contact | | | •1)) | Continuity Test. | | | r dealer immediately. | | | | → + | Diode. | | ety Information | | | -1← | Capacitance Test | | | Meter complies with the standards EMC EN61326. | | | | 0 | Fuse. | | 41 | N d = 4 = 0 = = 0 + 0 = = 0 = = 0 + 0 = 0 = 0 = | | | | l | ### Safet Use the Meter only as specified in this operating manual, otherwise the protection provided by the Meter may be In this manual, a Warning identifies conditions and actions that pose hazards to the user, or may damage the Meter or the equipment under test. A Note identifies the information that user should pay attention on. International electrical symbols used on the Meter and in this Operating Manual are explained on page 8. **Rules For Safe Operation** ## **⚠** Warning To avoid possible electric shock or personal injury. and to avoid possible damage to the Meter or to the equipment under test, adhere to the following rules: • Before using the Meter inspect the case. Do not use the Meter if it is damaged or the case (or part of the) is removed. Look for cracks or mis Pay attention to the insulation around the connectors. - Inspect the test clips for damaged insulation or exposed metal. Check the test clips for continuity. Replace damaged test clips with identical model number or electrical specifications before using the - Do not apply voltage to the Meter. - The rotary switch should be placed in the right position and no any changeover of range shall be made during measurement is conducted to prevent - Do not apply more than 30Vrms between the terminals and the grounding to avoid electric shock and damage to the Meter. - Use the proper terminals, function, and range for your measurements. - Do not use or store the Meter in an environment of high temperature, humidity, explosive, inflammable and strong magnetic field. The performance of the Meter may deteriorate after dampened. • Disconnect circuit power and discharge all highvoltage capacitors before testing resistance - Replace the battery as soon as the battery indicator appears. With a low battery, the Meter might produce false readings that can lead to electric shock and personal injury. continuity, capacitance or diodes. - Remove test clips from the Meter and turn the Meter power off before opening the Meter case. - When servicing the Meter, use only the same model number or identical electrical specifications replacement parts. - The internal circuit of the Meter shall not be altered at will to avoid damage of the Meter and any accident. - Soft cloth and mild detergent should be used to clean the surface of the Meter when servicing. No abrasive and solvent should be used to prevent the surface of the Meter from corrosion, damage and - The Meter is suitable for indoor use. Turn the Meter power off when it is not in use and - take out the battery when not using for a long time. • Please constantly check the battery as it may leak when it has been using for some time, replace the battery as soon as leaking appears. A leaking battery will damage the Meter. ### International Electrical Symbols | ÷ | Grounding | |-------------|--| | | Double Insulated | | ä | Deficiency of Built-In Battery. | | •1)) | Continuity Test. | | → + | Diode. | | ⊣ (- | Capacitance Test | | 0 | Fuse. | | \triangle | Warning. Refer to the Operating Manual. | | Œ | Conforms to Standards of European Union. | ## The Meter Structure (see figure 1) 2. Capacitance Zero Adjustment Switch Transistor Jack 4. Resistance, Diode and Continuity Buzzer Input Terminal 5. Capacitance Input Terminal 6. Small Value Capacitance Jack 7. Rotary Switch . Power Button 1. LCD Display **Functional Buttons** Below table indicated for information about the functional button operations. | Button | Description | |--------|---| | Power | Press the Power down to turn the Meter on. Press the Power down to turn the Meter on. | | | the Power again to turn the Meter power off. | ### Display Symbols (see figure 2) | No. | Symbol | Meaning | | | | |-----|-------------------------|---|--|--|--| | 1 | • | Data hold is active. | | | | | 2 | i ii | The battery is low. | | | | | | | ⚠Warning: To avoid false readings, whic | | | | | | | could lead to possible electric shock o | | | | | | | personal injury, replace the battery as soo | | | | | | | as the battery indicator appears | | | | | 3 | β | Transistor Test | | | | | 4 | >+ | Test of diode. | | | | | 5 | •1)) | The continuity buzzer is on. | | | | | 6 | pF, nF, | Farad. The unit of capacitance | | | | | | μF, mF | pF: Picofarad. 1x10 ⁻¹² or 0.00000000000 | | | | | | | farads. | | | | | | | nF: Nanofarad. 1x10 ⁻⁹ or 0.000000001 farads | | | | | | | μF: Microfarad.1x10 ⁻⁶ or 0.000001 farads | | | | | | | mF: Millifarad. 1x10 ⁻³ or 0.001 farads | | | | | 7 | Ω , k Ω , | Ω : Ohm. The unit of resistance | | | | | | MΩ | $k\Omega$: kilohm. 1x10 3 or 1000 ohm | | | | | | | M Ω : Megaohm. 1x10 6 or 1,000,000 ohm | | | | | 8 | H, mH | H: Henry. The unit of Inductance | | | | | | | mH: Millihenry. 1x10 ⁻³ or 0.001 henry | | | | ## **Measurement Operation** • Make sure the Low Battery Display 🗖 is not on, otherwise false readings may be provided. Pay extra attention to the ∆ symbol, before carrying measurement, which is located besides the input ## A. Measuring Resistance (see figure 3) ### ⚠ Warning To avoid damages to the Meter or to the devices under test, disconnect circuit power and discharge all the high-voltage capacitors before measuring resistance. The resistance ranges are 20Ω , 200Ω , $2k\Omega$, $20k\Omega$, $200k\Omega$. 2M Ω , 20M Ω , 200M Ω and 2000M Ω . To measure resistance, please connect the Meter as Insert the red test clip into the Ω → ···) terminal and the black test clip into COM terminal. 2. Set the rotary switch to Ω range. 3. Connect the test clips across with the object being The measured value shows on the display - When measuring at 20 $\!\Omega$ and 200 $\!\Omega$ range, the test clips can add 0.1 to 0.3 $\!\Omega$ error to resistance. To obtain precise readings in these low-resistance measurement, that is the range 20Ω and 200Ω , short circuit the input terminals beforehand and record the reading obtained (called this reading as X). (X) is the additional resistance from the - Then use the equation: - measured resistance value (Y) (X) = precision readings • The Meter displays "1" when there is no input, for - example open circuit situation - For high resistance measurement (>1M Ω), it is normal taking several seconds to obtain a stable reading. - When resistance measurement has been completed disconnect the connection between the testing clips and the circuit under test and remove the testing clips away from the input terminals of the Meter. ### B. Capacitance Measurement (see figure 4) To avoid damage to the Meter or to the equipment under test, disconnect circuit power and discharge all high-voltage capacitors before measuring capacitance. Use the DC Voltage function to confirm that the capacitor is discharged. The Meter's capacitance ranges are:200pF, 2nF, 20nF, 200nF, 2uF, 20uF, 200uF, 2mF and 20mF. To measure capacitance, connect the Meter as follows: 1. Set the rotary switch to F measurement mode. If the value of capacitor to be measured is unknown, use the minimum measurement position 200pF and increase the range step by step until a satisfactory reading is obtained and the overloading icon "1" is disappeared. 2. Insert the red test clip into the CAP + terminal and black test clip into the CAP - terminal. For small value apacitor measurement, insert the capacitor into the Small Value Canacitance Jack 3. Use the red test clip to clip the capacitor's positive and the black test clip to clip the capacitor's negative when P/N:110401103691X DATE:2018.06.26 REV.2 ### 4. When measuring small value capacitor, that is 200pF. 2nF and 20nF, first open circuit the test clips or the Small Value Capacitance Jack, then turn the Do not short the test clins to avoid the consumption of Capacitance Zero Adjustment Switch to adjust zero. 5. The measured value shows on the display - To minimize the effect of capacitance stored in the test clips, the test clips should be as short as possible and use the Small Value Capacitance Jack when measuring - When capacitance measurement has been completed, disconnect the connection between the testing clips and the circuit under test and remove the testing clips away from the input terminals of the Meter. ### C. Diode and Continuity Test (see figure 5) small value of capacitance. To avoid damages to the Meter or to the devices under test, disconnect circuit power and discharge all the high-voltage capacitors before measuring diodes and ### Testing Diodes Use the diode test to check diodes, transistors, and other miconductor devices. The diode test sends a current through the semiconductor junction, and then measures the voltage drop across the junction. A good silicon junction drops between 0.5V and 0.8V. To test a diode out of a circuit, connect the Meter as follows: 1. Insert the red test clip into the $\Omega \rightarrow \bullet \bullet \bullet$) terminal and - the black test clip into the COM terminal. 2. Set the rotary switch to ++ •1). 3. For forward voltage drop readings on any semiconductor component, place the red test clip on the component's - anode and place the black test clip on the component's The display shows the diode forward voltage drop's nearest value - In a circuit, a good diode should still produce a forward voltage drop reading of 0.5V to 0.8V; however, the reverse voltage drop reading can vary depending on the - resistance of other pathways between the probe tips Connect the test clips to the proper terminals as said above to avoid error display. The LCD will display "1" ndicating open-circuit for wrong connection. The unit of diode is Volt (V), displaying the positive-connection voltage-drop value. - When diode measurement has been completed, disconnect the connection between the testing clips and the circuit under test and remove the testing clips away from the input terminals of the Meter. ### Testing for Continuity - To test for continuity, connect the Meter as below: 1. Insert the red test clip into the $\Omega \rightarrow \bullet \bullet \bullet \bullet$ terminal and the black test clip into the COM terminal. 2. Set the rotary switch to ++ •1) - 3. Connect the test clips across with the object being - 4. The beeper comes on continuously when the test resistance <120 Ω . 5. The Meter displays the value of the test resistance. - The LCD displays "1" indicating the circuit being tested • When continuity test has been completed, disconnect the connection between the testing clips and the circuit under test and remove the testing clips away from the input terminals of the Meter ### D. Transistor hFE Measurement (see figure 6) To measure transistor, set up the Meter as follows: 1. Check that the transistor is PNP or NPN type. 2. Insert the transistor to be measured to the corresponding Transistor Jack ### 3. The Meter displays the tested transistor's nearest value. When transistor measurement has been completed, disconnect the connection between the testing clips and the circuit under test and remove the testing clips away from the input terminals of the Meter. - 250V, fast type fuse, \$5x20 mm. - Maximum Display: Display: 1999 - Measurement Speed: Updates 2-3 times /second. - Overloading: Display "1" - The range around ± 20pF Temperature: - Storage: -10°C~50°C (14°F ~122°F). - ≤ 75% @ 0°C 30°C; - One piece of 9V NEDA1604 or 6F22 or 006P. - Battery Deficiency: Display - Weight: Approximate 310g (battery included). - Certification: €, UL & CUL pending. ## **Accuracy Specifications** Accuracy: ±(a% reading + b digits), guarantee for 1 year. Operating temperature: 23°C ± 5°C. ### Relative humidity: <75%. Temperature coefficient: 0.1 x (specified accuracy) / 1°C. | | | | Protection | |---------------|-----------------|------------------|------------| | 20Ω | 0.01Ω | ±(1%+5) | | | 200Ω | 0.1Ω | ±(0.8%+3) | | | 2kΩ | $0.001 k\Omega$ | | | | 20kΩ | $0.01 k\Omega$ | ±(0.8%+1) | | | 200kΩ | 0.1kΩ | | 250V rms | | 2ΜΩ | $0.001 M\Omega$ | | | | $20M\Omega$ | $0.01 M\Omega$ | ±(1%+2) | | | 200ΜΩ | $0.1 M\Omega$ | ±[5%(rdg-10)+10] | | | $2000M\Omega$ | 1ΜΩ | Reference only | | ### Remarks: of resistance 2.000 uF | 0.001 uF 20.00 μF | 0.01 μF 200.0μF 0.1μF .000mF 0.001mF can add 0.1 to 0.3Ω error to resistance. To obtain precise readings in these low-resistance measurement, that is the range 20Ω and 200Ω , short circuit the input terminals beforehand and record the reading obtained (called this reading as X). (X) is the additional resistance from the measured resistance value (Y) - (X) = precision readings ### Then use the equation: 80Hz ### General Specifications - Fused Protection for capacitance Input Terminal: 0.315A, - Polarity: Auto. (Display "-" when negative) - Range: Manual Ranging • Capacitance range zero adjustment: - Operating: 0°C~40°C (32°F ~104°F) - ≤ 50% @ 31°C 40°C - Operating: 2000 m. Storage: 10000 m. - Battery Type: - Safety/Compliances: EMC EN61326. A. Resistance Test | Range | Resolution | Accuracy | Overload | | |---------------|--------------------------|------------------|------------|--| | Range | Resolution | Accuracy | Protection | | | 20Ω | 0.01Ω | ±(1%+5) | | | | 200Ω | 0.1Ω | ±(0.8%+3) | | | | $2k\Omega$ | 0.001kΩ | | | | | $20 k \Omega$ | 0.01kΩ | ±(0.8%+1) | | | | 200kΩ | 0.1kΩ | | 250V rms | | | $2M\Omega$ | $0.001 \mathrm{M}\Omega$ | | | | | $20M\Omega$ | 0.01MΩ | ±(1%+2) | | | | 200MΩ | 0.1ΜΩ | ±[5%(rdg-10)+10] | | | | 2000ΜΩ | 1ΜΩ | Reference only | | | • When measuring 20Ω and 200Ω range, the test clips ### ±(2%+2) 20.00mF 0.01mF - Overload Protection - 0.315A, 250V, fast type fuse, \$5x20 mm • If the Meter can not adjust to zero, you could use the tested values minus the open circuit value to get the ### correct measurement value. • Measure of Capacitance: 1F=10³mF = 10⁶µF = 10⁹nF ## C. Continuity & Diodes | | - | | | |----------|------------|------------|------------| | Function | Range | Resolution | Overload | | Function | | Resolution | Protection | | Diode | → + | 1mV | 250V rms | | | | | | ## Continuity •1) D. Transistor hFE (0~1000β). Maintenance /\text{\text{Warning}} Remarks: Range Resolution 1β not get water inside the case. A. General Service Condition Protection 250V rms Testing Vce ≈ 2.8V Ibo≈10 A • The display value is the tested transistor's nearest value This section provides basic maintenance information including battery and fuse replacement instruction. Do not attempt to repair or service your Meter unless you are qualified to do so and have the relevant alibration, performance test, and service information. To avoid electrical shock or damage to the Meter, do • Periodically wipe the case with a damp cloth and mild detergent. Do not use abrasives or solvents. To clean the terminals with cotton bar with detergent, as dirt or moisture in the terminals can affect readings. • Turn the Meter power off when it is not in use and take out the battery when not using for a long time. • Do not store the Meter in a place of humidity, high Open Circuit Voltage around 2.8V. ### Around < 120Ω , beeper comes on continuously. the case top from the case bottom. 4. Remove the fuse by gently prying one end loose, then ## and specification as follows and make sure the fuse is ### fixed firmly in the bracket. Fuse 1: 0.315A, 250V, fast type fuse, \$5x20 mm. 7. Rejoin the case bottom and case top, and reinstall the B. Replacing the Battery (see figure 7) 6F22 or 006P) To avoid false readings, which could lead to possible electric shock or personal injury, replace the battery as soon as the battery indicator " " appears. - 1. Turn the Meter power off and remove all connections from the terminals. - separate the battery compartment from the case bottom. - 5. Rejoin the case bottom and battery compartment, and reinstall the screw. ### C. Replacing the Fuse (see figure 8) # To avoid electrical shock or arc blast, or personal from the terminals. injury or damage to the Meter, use specified fuses ONLY in accordance with the following procedure. To replace the Meter's fuse: 1. Turn the Meter power off and remove all connections - separate the battery compartment from the case bottom. 3. Remove the screws from the case bottom, and separate - take out the fuse from its bracket. 5. Install ONLY replacement fuses with the identical type 2. Remove the screw from the battery compartment, and 6. Rejoin the battery compartment and the case top, and reinstall the screw. ### Replacement of the fuses is seldom required. Burning of a fuse always results from improper operation UNI-T UNI-TREND TECHNOLOGY (CHINA) CO., LTD. ** END ** ## 说明书菲林做货要求: | 序号 | 项目 | | | 칙 | 内容 | |--------------|------------|-------|-------------|-------------------------|--| | 1 | 尺寸 折叠成形 | | | 尺寸: 70 X142.5±1m | nm | | 2 | 材 | 质 | 60g书写纸 | ŧ | | | 3 | 颜色 黑色,双 | | | 面印刷 | | | 4 | 外观要求 印刷完整 | | | 清晰,版面整洁. 无分 | ↑层. 残损. 毛边等缺陷. | | 5 | 装订方式 封面图在 | | 封面图在 | 外面 | | | 6 | 表面处理 / | | / | | | | 7 | 其它 | | | | | | } | 版本 | | REV.2 修改成I | 股份有限公司 | | | DV
设 | DWH
设 计 | | 韦2018.07.02 | MODEL UT601 | Part NO.
物料编号: 110401103691X | | Ch
审 | HK
核 | Zhi | 12 | 机型 :英文说明书 | 7 1707年2冊 5・110401103091入 | | APPRO.
批准 | | Z Mar | "全一 | | 优利德科技(中国)股份有限公司 UNI-TREND TECHNOLOGY (CHINA) CO., LTD. |